Matrices with banded inverses: Inversion algorithms and factorization of Gauss-Markov processes

نویسندگان

  • Aleksandar Kavcic
  • José M. F. Moura
چکیده

The paper considers the inversion of full matrices whose inverses are -banded. We derive a nested inversion algorithm for such matrices. Applied to a tridiagonal matrix, the algorithm provides its explicit inverse as an element-wise product (Hadamard product) of three matrices. When related to Gauss–Markov random processes (GMrp), this result provides a closed-form factored expression for the covariance matrix of a first-order GMrp. This factored form leads to the interpretation of a first-order GMrp as the product of three independent processes: a forward independent-increments process, a backward independent-increments process, and a variance-stationary process. We explore the nonuniqueness of the factorization and design it so that the forward and backward factor processes have minimum energy. We then consider the issue of approximating general nonstationary Gaussian processes by Gauss–Markov processes under two optimality criteria: the Kullback–Leibler distance and maximum entropy. The problem reduces to approximating general covariances by covariance matrices whose inverses are banded. Our inversion result is an efficient algorithmic solution to this problem. We evaluate the information loss between the original process and its Gauss–Markov approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Matrices With -Block-banded Inverse: Inversion Algorithms

Block-banded matrices generalize banded matrices. We study the properties of positive definite full matrices whose inverses are -block-banded. We show that, for such matrices, the blocks in the -block band of completely determine ; namely, all blocks of outside its -block band are computed from the blocks in the -block band of . We derive fast inversion algorithms for and its inverse that, when...

متن کامل

Inversion of block matrices with block banded inverses: application to Kalman-Bucy filtering

We investigate the properties of block matrices with block banded inverses to derive efficient matrix inversion algorithms for such matrices. In particular, we derive the following: (1) a recursive algorithm to invert a full matrix whose inverse is structured as a block tridiagonal matrix; (2) a recursive algorithm to compute the inverse of a structured block tridiagonal matrix. These algorithm...

متن کامل

Groups of banded matrices with banded inverses

AproductADF1 : : : FN of invertible block-diagonalmatrices will be bandedwith a banded inverse. We establish this factorization with the numberN controlled by the bandwidthsw and not by the matrix size n:When A is an orthogonal matrix, or a permutation, or banded plus finite rank, the factors Fi have w D 1 and generate that corresponding group. In the case of infinite matrices, conjectures rema...

متن کامل

Banded Matrices with Banded Inverses and A = LPU

Abstract. If A is a banded matrix with a banded inverse, then A = BC = F1 . . . FN is a product of block-diagonal matrices. We review this factorization, in which the Fi are tridiagonal and N is independent of the matrix size. For a permutation with bandwidth w, each Fi exchanges disjoint pairs of neighbors and N < 2w. This paper begins the extension to infinite matrices. For doubly infinite pe...

متن کامل

Gauss-Jordan elimination method for computing outer inverses

This paper deals with the algorithm for computing outer inverse with prescribed range and null space, based on the choice of an appropriate matrix G and Gauss–Jordan elimination of the augmented matrix [G | I]. The advantage of such algorithms is the fact that one can compute various generalized inverses using the same procedure, for different input matrices. In particular, we derive representa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2000